. (1.2)
Если положить, что R1=R2, R4=R5, R3=R10, то уравнение (1.2) приводится к виду:
.
Очевидно, что эту схему в ограниченном диапазоне напряжений можно использовать как делитель напряжения. Погрешность перемножения двухквадрантного аналогового перемножителя не превышает 1 % при уровне входных сигналов до 5 В при напряжении питания 15 В. Ширина полосы пропускания определяется, с одной стороны, применяемыми операционными усилителями, а с другой - частотными свойствами полевых транзисторов.
1.3 Перемножители на управляемых дифференциальных делителях тока
В настоящее время при проектировании АП наибольшее распространение получили перемножители, построенные на дифференциальных транзисторных парах. Иногда этот метод перемножения называют «методом переменной крутизны». Он основан на использовании экспоненциальных свойств биполярных транзисторов: изменение входного напряжения на базах дифференциальной пары транзисторов приводит к экспоненциальному изменению токов коллекторов и вызывает пропорциональное изменение крутизны.
Суть этого метода заключается в том, что выходной дифференциальный ток управляемого линейного делителя тока пропорционален произведению входных величин. Из рисунка 1.4 следует, что выходные токи и их разность соответственно равны
I1 = xI0;
I2 = (1-x)I0;
I1- I2 = (2x - 1)I0.
Если положить, что X = kX(2x-1), а Y = kYI0, то
Z = kZ(I1 - I2) = (kZ/kXkY)XY.
Рис. 1.4. Управляемый напряжением дифференциальный делитель тока
Управляемые делители тока хорошо работают на высоких частотах, кроме того, относительно просто реализуются в интегральном исполнении, поэтому рассматриваемые далее аналоговые перемножители напряжения будут выполнены именно на управляемых делителях тока.
2 Перемножители на основе усилителей с переменной крутизной
Простейший способ реализации управляемого напряжением делителя тока заключается в использовании симметричного дифференциального каскада.
Пример схемы АП на основе усилителя с переменной крутизной приведен на рисунке 2.1.
Рис. 2.1. Простейший АП на основе дифференциального каскада
По своему действию дифференциальный каскад на транзисторах VT1 и VT2 (рис. 2.1) подобен усилителю с общим эмиттером, только токи эмиттеров указанных транзисторов не зависят от входных напряжений. Нетрудно заметить, что разность токов коллекторов транзисторов VT1 и VT2 пропорциональна не только входному дифференциальному напряжению UX, но и току эмиттера транзистора VT3 - IЭ3. Ток IЭ3 можно регулировать подачей напряжения между базами транзисторов VT3 и VT4. Если резисторы R1 и R2 равны, то напряжение на сопротивлении RН может быть представлено следующим образом:
, (2.1)
где Т - температурный потенциал.
Из выражения (2.1) следует, что зависимость выходного напряжения от входных сигналов существенно нелинейная. Разложив гиперболический тангенс в ряд и ограничившись первым членом разложения, получим [1]:
(2.2)
Условие линейности по каждому из входов может быть записано в виде:
(2.3)
где - допустимый коэффициент нелинейности амплитудной характеристики перемножителя.
В частности, при заданной нелинейности 1 % оцененная из выражения (2.3) относительная амплитуда входного сигнала U X,Y /2T не должна превышать 0,34, что практически позволяет применять такие АП только в качестве смесителя или балансного модулятора. Допустимые значения входных напряжений при заданной нелинейности приведены в таблице 2.1. Линеаризовать диапазон по входу Y можно включением резисторов в эмиттеры транзисторов VT3 и VT4, о чем будет сказано позже.
Таблица 2.1
Диапазон допустимых входных напряжений
, %
Значения UВХ при различной температуре, оС
-60
+25
+60
+125
1
0,34
6,1
8,7
9,8
11,7
5
0,8
14,1
20,6
23
27,5
10
1,16
21
30
33,3
4,
15
1,48
26,7
38
42,5
51
20
1,78
32
45,6
60
Другим существенным недостатком простейших схем является то, что при изменении тока IЭ.3 меняется падение напряжения на резисторах R1 и R2. При наличии технологического разброса параметров этих резисторов появляется дополнительная погрешность преобразования, обусловленная изменением постоянной составляющей в выходном сигнале.
Достоинством рассматриваемой схемы является то, что полярность выходного напряжения в ней определяется полярностью разности входных сигналов UX и UY, которые могут быть как положительными, так и отрицательными, т.е. обеспечивается четырехквадрантное перемножение. В то же время существует противоречие между допустимыми синфазными сигналами по входам X и Y - синфазное напряжение на входах Х должно быть всегда выше, чем на входах Y, что сужает область применения таких перемножителей. В частности, если вход Х может включать в синфазный сигнал 0 В, то для входа Y допустимый синфазный сигнал должен быть меньше нуля.
От многих перечисленных недостатков свободна схема АП, приведенная на рисунке 2.2 [2, 3].
Рис. 2.2. Перемножитель на основе сдвоенных дифференциальных каскадов с перекрестными связями
Сдвоенный дифференциальный каскад с перекрестными связями выполнен на транзисторах VT7, VT10, VT11, VT14 и питается от двух генераторов тока на транзисторах VT8, VT12, которые, в свою очередь, также образуют дифференциальный каскад с разделенными генераторами токов на транзисторах VT9, VT13. Такая схема включения позволяет при любых изменениях токов коллекторов транзисторов VT8 и VT12 сохранить неизменными падения напряжения на резисторах R2 и R3.
Включение резистора RY позволяет расширить линейный диапазон по входу Y АП. В этом случае разность выходных токов дифференциального каскада на транзисторах VT8 и VT12 можно определить как
(2.4)
где rЭ = Т/IЭ - дифференциальное сопротивление перехода база-эмиттер.
Если выполняется условие RY >> rЭ, тогда выражение (4) упрощается:
, (2.5)
а выражение (2.1) для данного перемножителя приобретает вид:
, (2.6)
где - разность входных напряжений между базами транзисторов VT7 и VT10.
Однако следует заметить, что и в этом случае линейное напряжение на входе Y будет ограничено максимальным током I0:
Поскольку проходная характеристика сдвоенного дифференциального каскада остается по-прежнему нелинейной, для линеаризации входа Х служит дифференциальный каскад на транзисторах VT2, VT3, VT5 и VT6. Линеаризация разности выходных токов в нем осуществляется, аналогично каналу Y, установкой резистора RX:
(2.7)
Нагрузкой дифференциального каскада являются транзисторы VT1 и VT4 в диодном включении. Токи коллекторов транзисторов VT2 и VT5, протекая через p-n переходы транзисторов VT1 и VT4, создают на них падения напряжения, разность которых является входным напряжением сдвоенного дифференциального каскада:
(2.8)
где I0 - начальный ток дифференциального каскада (предполагается, что транзисторы VT1 и VT4 абсолютно идентичны и их токи насыщения IS обратно смещенного p-n перехода одинаковы); IX - приращение тока, обусловленное приращением входного напряжения.
Подставляя (2.8) в (2.6), получим передаточную функцию перемножителя в следующем виде:
(2.9)
где масштабный коэффициент, имеющий размерность напряжения.
Схема, приведенная на рисунке 2.2, является базовой для большинства выпускаемых отечественной и зарубежной промышленностью АП. Для большинства современных интегральных микросхем АП, построенных на основе дифференциальных транзисторных пар с управляемой крутизной преобразования, погрешность перемножения лежит в пределах 0,5-2 % [4-6]. Источниками статической погрешности в АП являются рассогласование характеристик транзисторов в множительном ядре за счет технологического разброса и температурных градиентов по кристаллу, нелинейность входных преобразователей «ток-напряжение» (ПНТ) и т.д. [4]. В [6] показано, что наиболее существенный вклад в нелинейность АП вносят ПНТ, а при снижении погрешности линейности ПНТ до 0,1-0,05 % необходимо учитывать вклад в погрешность перемножения, вносимый объемными сопротивлениями баз транзисторов множительного ядра и логарифмирующих диодов [6].
Страницы: 1, 2, 3, 4, 5, 6, 7, 8