Рефераты. Абстрактный синтез конечного автомата

Абстрактный синтез конечного автомата

  • СОДЕРЖАНИЕ
  • Введение
  • 1. Абстрактный синтез конечного автомата
  • 1.1 Формирование алфавитного оператора
  • 1.2 Приведение оператора к автоматному виду
  • 1.3 Построение графа переходов абстрактного автомата
  • 1.4 Минимизация абстрактного автомата
  • 2. Структурный синтез конечного автомата
  • 2.1 Кодирование состояний, входных и выходных сигналов
  • 2.2 Формирование функций возбуждения и выходных сигналов структурного автомата
  • Заключение
  • Список литературы

ВВЕДЕНИЕ

Теория автоматов - это теория, на которой основаны экспериментальные методы исследования в кибернетике. При подходе к теории автоматов, как к части теории алгоритмов, центральной проблемой является изучение возможностей автоматов в терминах множеств слов, с которыми работают автоматы.

Можно выделить два основных аспекта работы автомата.

1. Автоматы-распознаватели, которые распознают входные слова, т.е. отвечают на вопрос, принадлежит ли поданное на вход слово данному множеству.

2. Автоматы-преобразователи, которые преобразуют входные слова в выходные, т.е. реализуют автоматные отображения.

Одной из задач теории автоматов является задача описания автомата и его реализации, т.е. представления автомата как структуры, состоящей из объектов фиксированной сложности. В этом отношении теория автоматов оказалось наиболее развитой ветвью теории алгоритмов.

Общая теория автоматов подразделяется на абстрактную теорию и структурную теорию автоматов. Абстрактная теория автоматов занимает промежуточное положение между алгеброй и логикой. С точки зрения приложений значение абстрактной теории автоматов отнюдь не сводится к удовлетворению запросов одной лишь вычислительной техники. Современная теория автоматов представляет собой математический аппарат для решения широкого класса комбинаторных проблем.

Структурная теория автоматов позволяет реализовать абстрактный автомат на элементах, принадлежащих к заранее заданному классу.

Для преобразования дискретной информации в различных областях техники используются цифровые автоматы. К цифровым автоматам относятся отдельные узлы и блоки специализированных и универсальных ЦВМ и ЦВМ в целом. Цифровыми автоматами могут быть названы также устройства, в автоматике, телемеханике, радиолокации и других областях техники, в которых требуется выполнять преобразование над сигналами, представленные в дискретной (цифровой) форме.

Первое правило функционирования автоматов заключается в следующем. Автомат необязательно должен запоминать входные истории. Вполне достаточно, чтобы автомат запомнил класс эквивалентностей, к которому приходится данная история.

Второе правило функционирования автоматов состоит в том, что на один и тот же входной сигнал конечный автомат может реагировать по-разному, в зависимости от того, в каком состоянии он находится в настоящий момент.

Конечный автомат - это устройство, работающее в дискретные моменты времени, или такты. На вход конечного автомата в каждом такте поступает один из возможных входных сигналов, а на его выходе появляется выходной сигнал, являющийся функцией его текущего состояния и поступившего входного сигнала.

Внутренние состояния автомата также меняются. Моменты срабатывания (такты), определяются либо принудительно тактирующими синхросигналами, либо асинхронно, наступлением внешнего события, то есть приходом сигнала.

Существует два вида реализации конечного автомата - аппаратная и программная. В первую очередь, реализация конечного автомата требует построения устройства памяти для запоминания текущего состояния автомата. Обычно используются двоичные элементы памяти, или триггеры, запоминающие значение одного двоичного разряда.

1. АБСТРАКТНЫЙ СИНТЕЗ КОНЕЧНОГО АВТОМАТА

1.1 Формирование алфавитного оператора

Для определения параметров задания необходимо ввести первичную информацию:

- порядковый номер в журнале;

- год поступления;

- номер группы;

Для данного задания это соответственно:

21, 08, 02.

Из этих цифр необходимо составить правильную десятичную дробь, в которой эти цифры следуют сразу после запятой:

Y1= 0,210802

Вторичная информация Y,Y3 ,Y4 получаются путем возведения 1 в степени 2, 3, 4 и удалением в дроби всех нулей между запятой и первой значимой цифрой.

Y2 = 0,444374

Y3 = 0,93675

Y4 = 0,19747

Для получения значений входных и выходных сигналов автомата необходимо полученные десятичные дроби преобразовать в двоичный код до шестнадцатого знака.

В результате преобразований получены следующие значения заданных сигналов.

Y1 = 0011010111110111

Y2 = 0111000111000010

Y3 = 1110111111001110

Y4 = 0011001010001101

Полученные значения записываются в столбцах: первые 8 значений в левой части, вторые 8 - в правой части. Алфавитный оператор соответствия представлен в таблице 1.

Таблица 1. Алфавитный оператор соответствия

Входные сигналы

Выходные сигналы

0010

1111

0110

1110

1111

1000

1101

1000

0010

0011

1010

1011

0011

1110

1110

1001

1.2 Приведение оператора к автоматному виду

Для того чтобы оператор преобразовался к автоматному виду, необходимо выполнение трех условий:

1. Любым двум одинаковым начальным отрезкам входных слов должны соответствовать одинаковые начальные отрезки выходных слов;

2. Длина входного слова должна равняться длине выходного слова;

3. Последний символ должен возвращать автомат в начальное состояние.

Данный оператор уже выровнен, так как длина каждого из входных слов равна длине соответствующего выходного слова. Каждому входному слову здесь сопоставляются не более одного выходного слова, поэтому оператор однозначен. Однако он не удовлетворяет условию полноты.

Таким образом, автоматный вид оператора примет, следующий вид:

Таблица 2. Автоматный вид

Входные сигналы

Выходные сигналы

0010

1111

0110

1110

1111

1000

1101

1000

00100000

11110011

1010

1011

0011

1110

1110

1001

1.3 Построение графа переходов абстрактного автомата

Построим по таблице 2 граф переходов автомата. При этом предполагается, что последний символ каждого входного слова должен переводит автомат в начальное состояние.

Граф переходов абстрактного автомата представлен в приложении 1.

1.4 Минимизация абстрактного автомата

По графу переходов построим таблицу переходов-выходов заданного автомата (таблица 3).

Таблица 3. Таблица переходов-выходов автомата

a(t-1)

0

1

a0

a1/1

a2/1

a1

a3/1

a4/1

a2

a10/0

a11/0

a3

-

a5/1

a4

-

a6/1

a5

a8/1

a9/0

a6

a8/0

-

a7

a0/-

a0/-

a8

a0/-

a0/-

a9

a0/-

a0/-

a10

-

a12/1

a11

a14/0

a15/0

a12

a13/1

-

a13

a0/-

a0/-

a14

-

a16/0

a15

a17/1

a18/0

a16

a0/-

a0/-

a17

a0/-

a0/-

a18

a0/-

a0/-

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.