Рассмотрим свойства производственной функции Кобба-Дугласа.
Первое свойство - постоянство отдачи от масштаба - описывается формулой F(nK,nL) = п АКаLb и означает, что если увеличить использование капитала и труда в n раз, то объём совокупного спроса, или объём дохода, возрастает в такое же число раз.
Второе важное свойство функции Кобба-Дугласа связано с изменением предельной производительности факторов. Например, если привлечь в производство дополнительное количество капитала К, а труд L использовать в прежнем объёме, то, при прочих равных условиях предельная производительность МРL , а производительность возросшего объема капитала МРК снизится. Если же увеличить количество труда, при прочих равных условиях, то его предельная производительность снизится, а предельная производительность капитала возрастёт. Вывод: нарушение пропорций между трудом и капиталом при заданной технологии приводит к отклонению от оптимального объёма производства, т. е. к неэффективности производства и означает, что если увеличить использование капитала и труда в п раз, то объем совокупного выпуска, или объем дохода, возрастет в такое же число раз.
Однако, если мы увеличим параметр А, например, внедрив более производительную технологию, то получим одновременное увеличение МР и МР, что является условием интенсивного экономического роста.
Третье свойство производственной функции Кобба-Дугласа - постоянство отношения дохода от труда к доходу от капитала (b /а), т. е. постоянство соотношения долей капитала и труда в национальном продукте.
Исследования американского сенатора и экономиста Пола Дугласа показали, что в Соединенных Штатах за сорок лет (с 1948 по 1989 гг.) соотношение b/а колебалось в пределах между 2 и 32, в результате чего оплата труда в 2-3 раза превышала вознаграждение капитала. Можно предположить, что постоянные рамки колебания соотношения b/а заданы технологически. Колебания b/а внутри этих рамок могут быть объяснены отклонением в соотношении I и S, так как вряд ли заработная плата, шкала налогообложения и нормы амортизации почти ежегодно могли претерпевать значительные изменения.
Макроэкономическое равенство I = S лежит в основе механизма экономического роста еще одной неоклассической модели, которая также базируется на производственной функции. Она называется моделью роста Солоу, по имени американского экономиста, лауреата Нобелевской премии Роберта Солоу.
Цель данной модели – ответить на три важных вопроса экономической политики: как добиться высоких и стабильных темпов роста, как одновременно с этим найти максимальный объем потребления, и какое влияние на экономический рост оказывает увеличение населения и внедрение новых технологий.
Построение модели. Разделив двухфакторную производственную функцию Y=F(K,L) на количество труда L, мы получим производственную функцию для одного человека: у = (k), где k = K/L – уровень капиталовооружённости единицы труда. Доход предстаёт как функция только одного фактора капиталовооружённости. Такая единичная производственная функция изображена на рис. 1
Рисунок 1
В данной функции предельная производительность капитала МР измеряется постоянно изменяющимся углом наклона кривой у = и показывает прирост выпуска, если капиталовооружённость работника возрастёт на 1 единицу, т. е.
В модели Солоу спрос на продукцию предъявляется со стороны потребителей и инвесторов. Производственные блага в условиях равновесия полностью инвестируются (S = I), не оставляя места накоплению товарно материальных запасов. Помня о макроэкономическом равенстве У = С + I, выпуск одного работника можно записать в виде у = с + i; функцию потребления как с ={l-s)y = (1-s) , а функцию инвестиции на одного работника как i = sy = s
Графический размер потребления и инвестиций при каждом уровне капиталовооружённости изображены на рис.1. Линией обозначена функция инвестиций. Расстояние между функциями и определяет объём потребления. На этом основании функция потребления выглядит как:
Важное место в модели Солоу занимает рассмотрение движения капитальных запасов, величина которых составляет разницу между размером инвестиций и объемом выбытия капитала: , где норма выбытия капитала (или норма амортизации) и является константой, а - объём выбытия капитала.
В ходе производства ежегодно пополняются капитальные запасы, независимо да того, с каким объемом капитала экономика начинает развиваться. Однако прирост капитала идет затухающими темпами. Это объясняется уже рассмотренным выше снижением предельной производительности капитала МР , происходящей по мере увеличения капиталово6руженности одного работника. Но при наращивании капиталовооруженности растет, и объем выбытия капитала. С ростом производства разница между инвестициями и объемом выбытия будет уменьшаться до тех пор, пока эти величины не выровняются между собой. Когда = 0, производство, инвестиции и выбытие капитала не могут продолжать свой рост и останавливаются на определенном устойчивом уровне. Экономика достигает равновесия. Уровень капиталовооруженности, при котором = 0, называется устойчивым уровнем капиталовооруженности ( ) и характеризует состояние равновесия экономики, отличающееся устойчивостью инвестиций и выбытия капитала, неизменностью объема производства. В условиях равновесия = 0 или
Эта формула дает возможность вычислить устойчивый уровень капиталовооруженности (k*), не прибегая к длительным подсчетам ежегодного прироста капитала и производства за ряд лет. Из пропорции k*/f(k*) = s/ видно, что k* = (k*) s/ .
Устойчивый уровень капиталовооруженности можно найти и с помощью графического анализа. На рис. 2 пересечение графика инвестиций sf(k) и графика выбытия капитала k как раз и будет соответствовать k*.
Величину k* можно найти, опустив перпендикуляр на ось абсцисс из точки пересечения графика инвестиций и графика выбытия капитала, чему соответствует равенство ( )= k.
Страницы: 1, 2, 3, 4, 5, 6, 7, 8