|
0.85 |
||||||
X6 |
0.12 |
0.60 |
0.74 |
0.91 |
0.74 |
0.85 |
1.00 |
Из таблицы 4 находим тесно коррелирующие факторы. Налицо мультиколлениарность факторов Х2 и Х4 . Оставим только один фактор Х2 . Так же достаточно высокий коэффициент корреляции ( 0.91 ) между факторами Х2 и Х3 . Избавимся от фактора Х3 .
5. Построение уравнения регрессии для абсолютных величин
Проведём многошаговый регрессионный анализ для оставшихся факторов : Х1 , Х2 , Х5 , Х6 .
а) Шаг первый .
Y = 12. 583 + 0 * X1 + 0.043 * X2 + 0.021 * X5 - 0.368 * X6
Коэффициент множественной корреляции = 0.861
Коэффициент множественной детерминации = 0.742
Сумма квадратов остатков = 32.961
t1 = 0.534 *
t2 = 2.487
t5 = 2.458
t6 = 0.960 *
У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1 можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй.
Y = 12.677 - 0.012 * X2 + 0.023 * X5 - 0.368 * X6
Коэффициент множественной корреляции = 0.854
Коэффициент множественной детерминации = 0.730
Сумма квадратов остатков = 34.481
t2 = 2.853
t5 = 3.598
t6 = 1.016 *
У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6 можно пренебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = 12.562 - 0.005 * X2 + 0.018 * X5
Коэффициент множественной корреляции = 0.831
Коэффициент множественной детерминации = 0.688
Сумма квадратов остатков = 39.557
t2 = 3.599
t5 = 4.068
В результате трёхшаговой регрессии мы получили рабочее уравнение.
6. Анализ матрицы коэффициентов парных корреляций для относительных величин
Таблица 5
№ фактора
Y
X1
X2
X3
X4
X5
X6
Y
1.00
0.14
-0.91
0.02
-0.88
-0.01
-0.11
X1
0.14
1.00
-0.12
-0.44
-0.17
-0.09
0.02
X2
-0.91
Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
При использовании материалов активная ссылка на источник обязательна.