Рефераты. О взаимосвязи философии и математики p> ЭЛЕЙСКАЯ ШКОЛА

Элейская школа довольно интересна для исследования, так как это одна из древнейших школ, в трудах которой математика и философия достаточно тесно и разносторонне взаимодействуют. Основными представителями элейской школы считают Парменида (конец VI - V в. до н.э.) и Зенона (первая половина
V в. до н.э.).

Философия Парменида заключается в следующем: всевозможные системы миропонимания базируются на одной из трех посылок: 1) есть только бытие, небытия нет; 2) существует не только бытие, но и небытие; 3) бытие и небытие тождественны. Истинный Парменид признает только первую посылку.
Согласно ему, бытие едино, неделимо, неизменяемо, вневременно, закончено в себе, только оно истинно сущее; множественность, изменчивость, прерывность, текучесть - все это удел мнимого.

С защитой учения Парменида от возражений выступил его ученик Зенон.
Древние приписывали ему сорок доказательств для защиты учения о единстве сущего (против множественности вещей) и пять доказательств его неподвижности (против движения). Из них до нас дошло всего девять.
Наибольшей известностью во все времена пользовались зеноновы доказательства против движения; например, «движения не существует на том основании, что перемещающееся тело должно прежде дойти до половины, чем до конца, а чтобы дойти до половины, нужно пройти половину этой половины и т.д.»[12].

Аргументы Зенона приводят к парадоксальным, с точки зрения «здравого смысла», выводам, но их нельзя было просто отбросить как несостоятельные, поскольку и по форме, и по содержанию удовлетворяли математическим стандартам той поры. Разложив апории Зенона на составные части и двигаясь от заключений к посылкам, можно реконструировать исходные положения, которые он взял за основу своей концепции. Важно отметить, что в концепции элеатов, как и в дозеноновской науке, фундаментальные философские представления существенно опирались на математические принципы. Видное место среди них занимали следующие аксиомы:

1. Сумма бесконечно большого числа любых, хотя бы и бесконечно малых, но протяженных величин должна быть бесконечно большой;

2. Сумма любого, хотя бы и бесконечно большого числа непротяженных величин всегда равна нулю и никогда не может стать некоторой заранее заданной протяженной величиной.

Именно в силу тесной взаимосвязи общих философских представлений с фундаментальными математическими положениями удар, нанесенный Зеноном по философским воззрениям, существенно затронул систему математических знаний.
Целый ряд важнейших математических построений, считавшихся до этого несомненно истинными, в свете зеноновских построений выглядели как противоречивые. Рассуждения Зенона привели к необходимости переосмыслить такие важные методологические вопросы, как природа бесконечности, соотношение между непрерывным и прерывным и т.п. Они обратили внимание математиков на непрочность фундамента их научной деятельности и таким образом оказали стимулирующее воздействие на прогресс этой науки.

Следует обратить внимание и на обратную связь - на роль математики в формировании элейской философии. Так, установлено, что апории Зенона связаны с нахождением суммы бесконечной геометрической прогрессии. На этом основании советский историк математики Э. Кольман сделал предположение, что
«именно на математический почве суммирования таких прогрессий и выросли логико-философские апории Зенона»[13]. Однако такое предположение, по- видимому, лишено достаточных оснований, так как оно слишком жестко связывает учение Зенона с математикой при том, что имеющие исторические данные не дают основания утверждать, что Зенон вообще был математиком.

Огромное значение для последующего развития математики имело повышение уровня абстракции математического познания, что произошло в большей степени благодаря деятельности элеатов. Конкретной формой проявления этого процесса было возникновение косвенного доказательства («от противного»), характерной чертой которого является доказательство не самого утверждения, а абсурдности обратного ему. Таким образом, был сделан шаг к становлению математики как дедуктивной науки, созданы некоторые предпосылки для ее аксиоматического построения.

Итак, философские рассуждения элеатов, с одной стороны, явились мощным толчком для принципиально новой постановки важнейших методологических вопросов математики, а с другой - послужили источником возникновения качественно новой формы обоснования математических знаний.

ДЕМОКРИТ

Аргументы Зенона вскрыли внутренние противоречия, которые имели место в сложившихся математических теориях. Тем самым факт существования математики был поставлен под сомнение. Какими же путями разрешались противоречия, выявленные Зеноном ?

Простейшим выходом из создавшегося положения бал отказ от абстракций в пользу того, что можно непосредственно проверить с помощью ощущений. Такую позицию занял софист Протагор. Он считал, что «мы не можем представить себе ничего прямого или круглого в том смысле, как представляет эти термины геометрия; в самом деле, круг касается прямой не в одной точке»[14]. Таким образом, из математики следует убрать как ирреальные: представления о бесконечном числе вещей, так как никто не может считать до бесконечности; бесконечную делимость, поскольку она неосуществима практически и т.д. Таким путем математику можно сделать неуязвимой для рассуждений Зенона, но при этом практически упраздняется теоретическая математика. Значительно сложнее было построить систему фундаментальных положений математики, в которой бы выявленные Зеноном противоречия не имели бы места. Эту задачу решил
Демокрит, разработав концепцию математического атомизма.

Демокрит был, по мнению Маркса, «первым энциклопедическим умом среди греков»[15]. Диоген Лаерций (III в. н.э.) называет 70 его сочинений, в которых были освещены вопросы философии, логики, математики, космологии, физики, биологии, общественной жизни, психологии, этики, педагогики, филологии, искусства, техники и другие. Аристотель писал о нем: «Вообще, кроме поверхностных изысканий, никто ничего не установил, исключая
Демокрита. Что же касается его, то получается такое впечатление, что он предусмотрел все, да и в методе вычислений он выгодно отличается от других»[16].

Вводной частью научной системы Демокрита была «каноника», в которой формулировались и обосновывались принципы атомистической философии. Затем следовала физика, как наука о различных проявлениях бытия, и этика.
Каноника входила в физику в качестве исходного раздела, этика же строилась как порождение физики. В философии Демокрита прежде всего устанавливается различие между «подлинно сущим» и тем, что существует только в «общем мнении». Подлинно сущими считались лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть такая же реальность, как атомы (бытие).
«Великая пустота» безгранична и заключает в себе все существующее, в ней нет ни верха, ни низа, ни края, ни центра, она делает прерывной материю и возможным ее движение. Бытие образуют бесчисленные мельчайшие качественно однородные первотельца, различающиеся между собой по внешним формам, размеру, положению и порядку, они далее неделимы вследствие абсолютной твердости и отсутствия в них пустоты и «по величине неделимы». Атомам самим по себе свойственно непрестанное движение, разнообразие которого определяется бесконечным разнообразием форм атомов. Движение атомов вечно и в конечном итоге является причиной всех изменений в мире.

Задача научного познания, согласно Демокриту, состоит в том, чтобы наблюдаемые явления свести к области «истинного сущего» и дать им объяснение исходя из общих принципов атомистики. Это может быть достигнуто посредством совместной деятельности ощущений и разума. Гносеологическую позицию Демокрита Маркс сформулировал следующим образом: «Демокрит не только не удалялся от мира, а, наоборот, был эмпирическим естествоиспытателем»[17]. Содержание исходных философских принципов и гносеологические установки определили основные черты научного метода
Демокрита: а) в познании исходить от единичного; б) любые предмет и явление разложимы до простейших элементов (анализ) и объяснимы исходя из них (синтез); в) различать существование «по истине» и «согласно мнению»; г) явления действительности - это отдельные фрагменты упорядоченного космоса, который возник и функционирует в результате действий чисто механической причинности.

Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства имеют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономерности, но выступает с критикой априорных математических построений пифагорейцев, считая, что число должно выступать не законодателем природы, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвосхищает идеи математического естествознания. Исходные начала материального бытия выступают у Демокрита в значительной степени как математические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соответствие с исходными философскими положениями, с логикой, гносеологией, методологией научного исследования.
Созданная таким образом концепция математики, называемая концепцией математического атомизма, оказалась существенно отличной от предыдущих.

У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процедурой математического атомизма является разложение геометрических тел на тончайшие листики
(плоскости), плоскостей - на тончайшие нитки (линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии определяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в теле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им бесконечной делимости. Таким образом он решает проблему правомерности теоретических построений математики, не сводя их к чувственно воспринимаемым образам, как это делал Протагор. Так, на рассуждения
Протагора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительности же этот участок настолько мал, что не поддается чувственному анализу, а относится к области истинного познания.

Страницы: 1, 2, 3, 4, 5



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.