Рефераты. Методологическое и логическое основания применения системно-философского подхода к изучению конкретн...

Любая система существует лишь при наличии в среде строго определенных видов материи в необходимых количественных отношениях. Если же в среде отсутствует необходимая для данной системы материя, то какой бы энергетически насыщенной ни была среда, система в ней существовать не может.

3. Активные системы являются генераторами качественно новых видов материи в природе, так как в результате их самораспада выделяются отходы существования системы и активные радикалы, дающие начало новым поколениям систем и повторению циклов самоизменения материи в них.

4. Диалектика материального обмена в комплексе «система – окружающая среда» приводит к его закономерному самодвижению. Любая активная структура (космической, биотической или социальной природы) появляется лишь при наличии в среде соответствующей материи и существует только при наличии материального обмена веществом и энергией с окружающей средой. В результате этого активная структура поглощает необходимые вещества и энергетические компоненты среды, а выбрасывает в нее отходы своего существования. Вследствие чего эволюция системы и ряда поколений аналогичных систем приводит к диалектическому изменению окружающей материальной среды в следующих направлениях:

-   среда все более обедняется необходимыми для данных систем компонентами;

-   среда насыщается отходами существования, т.е. продуктами материального обмена и самораспада систем.

Таким образом, само развитие систем приводит к неадекватности видов материи и в итоге к появлению непригодной для данных систем среды обитания. Если отсутствуют условия восстановления первичной среды, она необратимо исчезает, а с ней и первичные системы, так как вторичная среда для них непригодна. На их месте во вторичной среде появляются новые, вторичные системы и т.д. Таким образом, идет взаимосвязанная эволюция комплекса «система – окружающая среда» по пути, который можно условно обозначить как тип эволюции комплекса, самоуничтожающий систему.

3. Экологические проблемы современного общества с точки зрения системно-философского подхода.


Описанный ранее процесс реализуется в том случае, когда среда и существующие в ней системы представляют относительно изолированный комплекс или в том случае, когда самовосстановление среды происходит, но оно менее интенсивное, чем изменение ее активными системами.

В первом случае деградация окружающей среды идет быстрее, а во втором – несколько замедляется вследствие частичного восстановления. К сожалению, современное общество развивается пока по типу, самоуничтожающему систему. Оно потребляет из окружающей среды в огромных масштабах необходимые ему вещества и энергию, а выбрасывает туда отходы своего существования.

Существует закономерность, согласно которой, чем больше однородных систем находится в окружающей среде и чем интенсивнее их самодвижение, тем быстрее они изменяют среду, сами создают непригодные условия для своего существования и открывают путь к появлению и эволюции других структур. Отсюда вытекает, что, чем больше количество людей на планете и чем интенсивнее их деятельность, тем быстрее становится непригодной для существования человека измененная природная среда.

Для существования людям необходимы три основные составляющие важных компонентов:

-                     продукты питания;

-                     кислород для дыхания;

-                     вещества и энергия для создания искусственной среды существования с оптимальными для человека условиями.

В настоящее время самым губительным процессом является изменение состава атмосферы: уменьшение содержания кислорода, увеличение содержания углекислого газа и увеличение концентрации вредных газов. Кислородный баланс изменяется по причинам беспощадной вырубки лесов на всех континентах планеты и загрязнения водных бассейнов нефтяными, полимерными и др. пленками, а также другими отходами антропогенного происхождения.

С другой стороны, под действием человека изменился характер потребления кислорода: основным его потребителем становится промышленность и транспорт. Например, один автомобиль за 950 километров пробега потребляет столько кислорода, сколько хватило бы человеку на один год.

Кроме этого, деятельность человечества приводит к исчерпанию природных полезных ископаемых и к изменениям в геологических масштабах неживой природы на планете. Она разрушает биоценозы и экосистемы. Первое может привести к определенному изменению литосферы, гидросферы, атмосферы и ионосферы; второе – к разрушению сложившейся структуры биосферы и биотического круговорота.

Таким образом, в современных условиях необходим глобальный подход к экологическим проблемам, который позволяет глубже раскрыть основные общие закономерности самодвижения материи в комплексе «система – окружающая среда». Общую онтологическую базу глобального подхода к экологическим проблемам составляют современные философские и общенаучные представления о единстве материального мира и его системности. Согласно этому представлению неживая природа (космическая материя), живая материя (биотическая материя) и общество (социальная материя) состоят из бесконечного множества систем макромира, микромира и мегамира, различающиеся размерами, особенностями структуры, саморазвития, характером внутренних и внешних взаимодействий и т.д.

Но если учитывать объективную диалектику взаимодействия любой активной системы и среды, то напрашивается методологический вывод о том, что необходимо исследовать взаимодействие активных космических систем и среды их существования (космической экологии). Это означает, что современная экология должна опираться на три фундаментальных блока – космическая, биотическая и социальная экологии, в совокупности отражающие все проблемы современности. Забвение или уход от решения глобальных проблем в настоящее время равносильны в итоге полному разрушению среды существования человечества и его гибели.

Таким образом в современной экологической науке все более необходимым становится системно-философский подход – использование принципа системности. В синтезирующем целостном представлении о развитии природы объединяются все науки. Поток информации идет в разных направлениях: от естественных наук к социальным и от социальных наук к естественным. Здесь главной задачей является сведение всех знаний о природе в целостную систему, элементы которой связаны между собой предельными переходами. Такой интегративный подход, преодолевающий границы между традиционными научными дисциплинами, более адекватно отражает Вселенную, а в методологическом понимании поднимает саму науку на высший уровень теоретической зрелости.

Методологически этот подход может осуществляться на базе использования универсальных закономерностей взаимодействия среды и системы или на основе применения результатов конкретно-научных исследований, при творческом применении выводов одних областей науки в смежных областях, путем научной экстраполяции эмпирических и теоретических обобщений. Итогом подобного подхода в глобальном масштабе станет разработка и осуществление конкретных мероприятий по стабилизации и улучшению экологической обстановки в биосфере и ноосфере.

Заключение.


Наука в целом мыслится как единая система знаний, все более полно и точно отражающая многообразие окружающего мира с помощью различных методов и приемов. Метод науки понимается как определенный набор инструментов общего арсенала средств научного познания. Собственно, методологическая задача состоит в том, чтобы определить набор этих инструментов и способ их применения в избранной области науки. Изменилась роль методолога: он стал прежде всего исследователем. Если раньше философия науки вооружала его своеобразным кодексом поведения ученого, с помощью которого он начинал судить, достойна ли теория считаться научной, то теперь философия науки снабдила его инструментом для анализа научных знаний. Следовательно, можно сказать, что сегодня методолог – это прежде всего специалист, изучающий состояние и эволюцию системы научных знаний.

Теперь необходимо проанализировать эффективность использования системно-философского подхода при изучении различных явлений природы с точки зрения применения особого приема – метафоры. Метафоры – это стандартный прием языковой практики, которые имеют важную познавательную функцию. В 1994 году А. Клеймер и Т. Леокард предложили следующую типологию научных метафор: педагогические метафоры, эвристические метафоры и конститутивные метафоры.

Педагогические метафоры – призваны прояснять сложные научные цели для непосвященных, обычно путем создания соответствующих визуальных образов.

Эвристические метафоры – это образы, чаще всего аналогии, которые помогают ученому осмыслить интересующую его проблему.

Конститутивные метафоры – это целостные концептуальные схемы, с помощью которых человек постигает окружающий мир. Такие метафоры стоят у истоков целых научных школ и исследовательских программ, определяя общую направленность научной мысли.

Все три типа метафор можно встретить в схеме алгоритма самодвижения симметричной активной системы. [10, с. 54]. Материал, накопленный естественными и социальными науками, показывает, что первичное происхождение качественно новых систем – всеобщая закономерность космической, биотической и социальной материи. Поэтому в механизм и алгоритм самодвижения активных систем включены как их первичное происхождение из материи среды, так и вторичное образование из радикалов предыдущих поколений системы. Следовательно, процесс круговорота материи в системе при взаимодействии с окружающей средой есть не что иное, как описание механизма и алгоритма самодвижения активных систем. Схематично он отражен в приложении 1.

Использование в данной схеме педагогических метафор через создание особых визуальных образов способствует оптимальному развитию памяти. Поэтому можно сказать, что системный подход в образовании стимулирует разработку умения высшего типа – рассуждать логично, обоснованно, творчески и т.д. И если не упустить момент и систематически стимулировать свойственные всем людям качества удивления перед миром и создавать в классе атмосферу удовольствия от интеллектуального поиска, то резервы интеллекта, которые в неблагоприятных условиях остаются невостребованными, могут быть максимально задействованы. Например, на обобщающих уроках по биофизике и др. вполне логично использование подобных схем при анализе существующих связей между двумя естественными науками или между естественными и социальными науками. (см. приложение 2)

В качестве эвристической метафоры можно привести пример с воздушным шариком [10, c. 40]. Для лучшего понимания двух различных сторон системы, ее представляют в виде постоянно надуваемого и сдуваемого резинового, воздушного шарика. Сам шарик – это собственно структура, а его содержимое (вещество и энергия) – это материальное содержимое. Конечно, данная аналогия очень условна, поскольку между статистической и динамической частями нет непереходимой грани, но все же она дает в какой-то мере наглядное представление о соотношении отмеченных частей.

Но наибольшее значение в этой схеме имеет, все-таки, конститутивные метафоры. Через подобные схемы формируются особые достояния человеческого сознания – от мировоззренческих образов до научной картины мира. В данном случае, логика рассуждения опирается на доказательство и обоснование знаний из различных областей частных наук, следовательно, системные знания о научной картине мира создают цельную основу мышления, миропонимания и деятельности человека. Самое главное, системные знания помогают значительно быстрее и эффективнее усваивать множество знаний из конкретных наук.

В учебном процессе при изучении систем различной природы, таким образом, рекомендуется иметь ввиду следующие предположения:

-                     критерием логического основания теории НКМ является ее непротиворечивость;

-                     системы Космоса, Биоты и Социума – историчны, т.е. они изменяются и развиваются во времени;

-                     использование системно-философского подхода в современном образовании продиктовано закономерной эволюцией к интеграции и синтезу знаний во всех сферах человечества;

-                     схемы и таблицы в приложении помогут значительно быстрее и эффективнее усваивать множество знаний из конкретных наук.

Приложение 1

Схема алгоритма самодвижения симметричной активной системы:

I — этап концентрации материи системой: II — переходный, или этап поляризации системы; III — этап рассеяния материи из системы; IV — этап самоорганизации предструктур (1) или новых протоструктур за счет взаимодействия радикалов (9); 1— 9 — стадии самодвижения активной системы; 1 — предструктура; 2 — протоструктура; 3 — незрелая структура; 4 — зрелая структура; 5 — поляризованная структура: 6 — структура с разорванным центром; 7 — распадающаяся структура; 8 — образование радикалов; 9 — взаимодействие радикалов с образованием новой протоструктуры (2); ВПС — воспринимающие подструктуры, ППС — проводяще-преобразующие подструктуры; КПС — концентрирующие подструктуры; qP — радикалы.

Приложение 2


Общие структуры активных систем Космоса, Биоты и Социума

Школьный предмет

Система

ВПС

ППС

КПС

Физика

Атом

Внешние электроны

Внутренние электроны

Ядро из протонов и нейтронов

Биология

Живая клетка

Мембрана

Цитоплазма

Ядро

География, астрономия

Планета Земля

Внешние геосферы: лито-, гидро-, атмо-, био-, магнито-, ноосферы

Мантия

Ядро

Астрономия

Звезда Солнце

Фотосфера

Зона конвекции и зона переноса лучистой энергии

Ядро – зона термоядерных реакций

История государства и права

Государство

Граница

Основная территория

Столица

Население государства

Трудящиеся: крестьяне, рабочие, интеллигенция и т.д.

Средний класс: чиновники, работники торговли и т.д.

Правящий класс: дворянство, Дума и т.д.

Анатомия

Человек

Эпителий, органы чувств

Органы, осуществляющие обмен веществ, скелет, мышцы

Мозг, половая система

Зуб

Эмаль

Дентин

Пульпа

Глазное яблоко

Склера

Стекловидное тело

сетчатка

Литература


1.                  Афанасьев В. Г. Системность и общество. М., 1980.

2.                  Воронцов-Вельяминов Б. А. Очерки о Вселенной. М., 1980.

3.                  Джиджян Р. З. Философские и методологические проблемы науки о Вселенной. Ереван, 1984.

4.                  Кузнецова Л. Ф. Картина мира и её функции в научном познании. Минск, 1984.

5.                  Мелюхин С. Т. Материя в её единстве, бесконечности и развитии. М., 1966.

6.                  Мелюхин С. Т. Философские основания естествознания. М., 1987.

7.                  Пригожин И. Принцип системности в познании процессов. М., 1986.

8.                  Розгачева И. К. Самоорганизующиеся системы во Вселенной. М., 1989.

9.                  Ушакова Е. В. Развитие общенаучных представлений – одно из направлений стратегии ускорения НТП // Ускорение социально-экономического развития и человеческий фактор. (Тезисы). Барнаул, 1987.

10.              Ушакова Е. В. Общая теория материи (основы построения).
Ч. 1-3. Барнаул, 1992.

11.             Ушакова Е. В. Системная философия и системно-философская научная картина мира на рубеже третьего тысячелетия. Барнаул, 1998.

12.             Klamer A., Leonard Th. So what’s economic metaphor? New York, 1994.


Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.