Другой заслугой Ньютона, по сути сделавшей физику самостоятельной наукой, стала идея аксиоматизации механики, предложенная в труде “Математические начала натуральной философии”. Там Ньютон, вдохновленный “Началами геометрии” Евклида, выдвигает несколько фундаментальных законов механического движения, известных сейчас как три закона Ньютона. Опираясь на эти “аксиомы”, он, используя математические методы и дедукцию, описывает качественно и количественно многочисленные физические явления.
Лейбницу мы также обязаны удобной системой обозначений для основных предельных операций. Развивая символьные обозначения дальше, Лейбниц мечтает о неком универсальном исчислении, используя которое можно находить истину, механически применяя некоторые правила. “Тогда философы перестанут спорить, а начнут вычислять”. Его мечта в некотором смысле осуществится в начале XX века, когда математики формализуют логику, создав исчисление предикатов.
XVIII век характеризуется окончательной математизацией физики. Крупнейшие математики того времени: Л.Эйлер, Ж.-Л.Лагранж, П.С. Лаплас развивают анализ бесконечно-малых, делая его основным орудием исследования в естествознании. Полный успех был достигнут с его помощью в небесной механике – описаны движения планет, Луны в рамках закона тяготения Ньютона. Лаплас в своем капитальном сочинении “Трактат о небесной механике” провозгласил тезис, известный как принцип детерминизма: “Зная положения всех частиц во вселенной и их скорости в данный момент, мы можем определить состояние вселенной в любой момент в будущем”. Математическое обоснование ему дается уже в следующем столетии в теореме Коши-Ковалевской о существовании и единственности решения обыкновенного дифференциального уравнения.
XIX век ознаменовался не только социальными революциями, но и революциями в точных науках. Новые идеи, родившиеся в абстрактных недрах математики, такие как понятие группы, неевклидовая геометрия нашли и до сих пор находят применение в физике, кристаллографии, химии. Новые явления в физике – электричество и магнетизм оказываются хорошо описываемыми “старыми” методами дифференциального и интегрального исчисления с некоторыми дополнениями из векторного анализа. Казалось бы все замечательно: математический дух витал над всеми областями знания, которые тогда считались науками, а сама математика была эталоном строгости и непротиворечивости, к которому должны стремиться остальные науки. Но в конце XIX века в трудах Г.Кантора появляется нарушитель спокойствия – теория множеств. Собственно по-началу ничего такого опасного в ней не было – Кантор попытался математически описать понятие множества – произвольного набора каких-либо математических: натуральных чисел, точек на прямой, вещественно-значных функций и т.д. Параллельно шли работы по так называемым основанием математики: ученые пытались на аксиоматической основе построить математический анализ, теорию действительных чисел, геометрию (список аксиом Евклида оказался неполным, полную аксиоматику геометрии дал Гильберт в 1899 г.). Объяснение этому процессу можно дать следующее: математический аппарат (в особенности метод бесконечно-малых) на протяжении нескольких веков использовался во многих приложениях и зарекомендовал себя как эффективное орудие естествознания; но объяснения почему все применяемые методы правильны с точки зрения логической строгости, не было – ну согласуются с наблюдениями и ладно; но это не значит, что мы застрахованы от “сбоев” в будущем. Для подведения фундамента под эти методы, математики решили использовать испытанный аксиоматический метод. В связи с этим было разработано исчисление предикатов – система логических аксиом и правил вывода из них новых утверждений. С его помощью, опираясь на аксиомы любой области математики, посредством буквально механического применения правил вывода можно получить любую теорему данной области. На этом пути удалось найти аксиомы многих областей математики и свести вопрос о непротиворечивости математического анализа к непротиворечивости арифметики. Теория множеств же является в некотором смысле фундаментом математики: все объекты, с которыми работают математики являются множествами. Но вот уже на первых этапах развития этой теории начали появляться противоречия, что грозило фундаменту всей математики. К счастью в начале XX века удалось придумать аксиоматизацию теорию множеств, свободную (на сегодняшний день) от противоречий.
Развитие математики и ее приложений в XX веке было настолько бурным, что его трудно описать достаточно подробно. Выделим лишь некоторые основные моменты. Физические приложения продолжали развиваться, не ограничиваясь уже одним дифференциальным и интегральным исчислениями: в ядерной физике, например, начали широко использовать многомерную геометрию и теорию групп; в теории относительности замечательные применения нашла неевклидова геометрия. Теория вероятностей возможно даже обогнала математический анализ по числу приложений: методы математической статистики используют в огромном числе наук, начиная с физики и заканчивая психологией и лингвистикой. Развитие математической логики, вызванное программой Гильберта обоснования математики, привело к появлению компьютеров, которые изменили мировоззрение современного человека. Практика ставит новые задачи, которые уже не решаются испытанными в физике методами анализа непрерывных функций. Эти дискретные задачи из экономики, генетики, криптографии и др. характеризуются трудоемким перебором огромного числа вариантов, который не под силу даже компьютерам.
Тот, кто не знает математики, не
может узнать никакой другой науки
и даже не может обнаружить своего
невежества.
Р.Бэкон
В чем же заключается мощь и удивительная плодотворность применения математики в различных науках? Чтобы ответить на этот вопрос, проанализируем некоторые методы математизации.
Важнейший метод – это математическое моделирование. Он состоит в том, что исследователь строит математическую модель рассматриваемой области, то есть выделяет существенные для него свойства и количественные характеристики явления, выделяет существенные отношения между ними и пытается найти какой-либо похожий объект в математике.
Например, изучая численности популяций сардин и рыб-хищников в Средиземном море, В.Вольтерра выделил следующие количественные характеристики:
· численность сардин (обозначив их за x)
· численность хищников (соответственно y)
далее он выявил важные для него отношения между ними:
· в среднем все особи одинаковы
· популяция сардин увеличивается, если нет встреч с хищником
· скорость роста ее численности пропорциональна самой численности (так как каждая особь может произвести потомство)
· число сардин, гибнущих от хищников пропорционально числу встреч с ними, а это число в среднем пропорционально xy
· популяция хищников уменьшается при отсутствии сардин (гибнут от голода)
· скорость этой убыли пропорциональна численности хищников
· скорость прироста числа хищников пропорциональна числу их встреч с кормом-сардинами, то есть величине xy.
где A, B, C, D – некоторые положительные коэффициенты, зависящие от конкретных природных условий. Изучая затем эту систему методами, разработанными другими математиками задолго до него, Вольтерра получает описание и объяснение многих явлений, замеченных за долгую историю рыболовства в Италии, таких например, как странные колебания величины улова сардин (а значит и их общей численности).
Этот пример показывает еще одну идею моделирования – некоторое упрощение, отбрасывание лишней, не нужной информации. Здесь, это допущения одинаковости особей, равновероятности их встреч, равновозможности производить потомство. Мы как-будто бы абстрагируемся от конкретной сардины и выделяем только нужные для нас ее свойства. Конечно в итоге, мы получаем несколько упрощенную картину явления, но в данном случае нам это и требовалось. Важнейшим моментом является то, чтобы при упрощении не упустить нужные нам черты, не огрубить модель настолько, чтобы она перестала достаточно хорошо для нас описывать явление. С другой стороны, модель не должна получиться очень сложной, не поддающейся математическому анализу. Правда, с появлением мощных ЭВМ, возможности анализа заметно расширились, но некоторые задачи, например долгосрочное прогнозирование погоды, до сих пор являются недоступными.
Удивительным образом оказывается, что одна и та же математическая модель может описывать много разнообразных явлений в различных областях. Например, одно дифференциальное уравнение может описывать и рост численности популяции, и химический распад, и цепную ядерную реакцию, и распростронение информации в социальной группе. В чем причина такой всеприминимости математических моделей? Ответа на этот вопрос математика не дает. Вот что говорит академик В.И.Арнольд в лекции [2]:
Почему модель сечения конуса описывает движение планет? Мистика. Загадка. Ответа на этот вопрос нет. Мы верим в силу рациональной науки. Ньютон видел в этом доказательство существования Бога:”Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе, как по намерению и по власти могущественного и премудрого существа…Сей управляет всем не как душа мира, а как властитель Вселенной, и по господству своему должен именоваться Господь Бог Вседержитель”.
Но можно дать и следующее некоторое “обоснование” этому факту. Когда исследователь изучает какое-то явление и строит скажем количественную модель, он стремится к простоте модели и выделяет только небольшое число параметров и отношений между ними. В итоге, по огромному количеству явлений получаем модели, связанные скажем с определенными дифференциальными уравнениями. Но в теории дифференциальных уравнений эти уравнения классифицированы в достоточно небольшое число типов, которые различаются по свойствам и методам их решения. В итоге и получается, что дифференциальные уравнения (а значит и модели) для большого числа явлений попадают в один класс, в котором они практически неразличимы.
Страницы: 1, 2, 3, 4